Science

Hopes for new physics dashed by ordinary-looking W bosons at CERN


The CMS detector at the Large Hadron Collider

SciTech Image/James King-Holmes/Alamy Stock Photo

A possible crack in the standard model of particle physics seems to be shrinking, as new data from CERN’s Large Hadron Collider (LHC) contradicts a previous puzzling result that had physicists excited about the possibility of new, exotic physics – but some mysteries remain.

“The standard model survives for the moment,” Josh Bendavid at the Massachusetts Institute of Technology told a packed seminar room at CERN, the particle physics laboratory near Geneva, Switzerland, on 17 September. He was presenting new data on the mass of the W boson, a fundamental particle that is crucial for processes like nuclear decay and setting the mass of the Higgs boson.

Questions about the W boson mass began in 2022, when physicists working with data from the Tevatron collider at Fermilab in Illinois sent shockwaves through the particle physics community. Their value for the W boson mass was starkly different from that predicted by the standard model, our best picture of how the universe’s particles and forces interact, suggesting physicists may have missed something.

But in 2023, researchers at CERN cast doubt on this discrepancy, after they reanalysed old data taken by the ATLAS detector at the LHC. They found a value for the W boson mass that once again agreed with the standard model prediction, dampening hopes for a deviation from known physics.

Now, Bendavid and his colleagues have produced a new value for the W boson mass, using new data from another of the LHC’s detectors, the Compact Muon Solenoid (CMS), and found a value of 80,353 million electronvolts (MeV) which, with an uncertainty of 6 MeV, agrees with the standard model. The tiny uncertainty also makes this the most precise measurement produced at the LHC, said Bendavid.

Ashutosh Kotwal at Duke University in North Carolina, who led the scientific collaboration that produced the Tevatron result, says that it is great to have another measurement of the W boson mass, but as the LHC and Tevatron colliders use different methods to produce the particle, it is harder to compare the results.

“In this fundamental respect of the beams, ATLAS and CMS are identical,” says Kotwal. “What would have been ideal is additional or independent data at the Tevatron.” Unfortunately, the Tevatron shut down in 2011, so there will be no more new data.

All of this means it is too early to tell which W boson mass measurement is correct and that the differences must still be explained. “It doesn’t end with two numbers on the table, it’s the beginning,” says Kotwal. “It’s when we start discussing scientific and technical details about procedures. The truth is out there, there is a W boson mass in the universe. We’re all trying to find it.”

Topics:



Source link

Washington Digital News

Leave a Reply